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 A  BSTRACT 

 The  complexity  and  criticality  of  airspace  control,  coupled  with  the  increasing  demand  for 
 flights,  highlight  the  need  for  advanced  tools  to  optimize  and  secure  operations.  Additionally,  many 
 variables  influence  the  air  traffic  scenario  and,  given  the  difficulty  of  analytically  assessing  the 
 impact  of  each  variable,  a  possible  strategy  is  to  use  Machine  Learning  techniques  to  more 
 accurately  assign  the  weight  of  each  factor,  by  processing  historical  data.  In  this  context, 
 considering  that  one  of  the  variables  that  most  influences  air  traffic  is  runway  reconfiguration,  this 
 paper  presents  the  development  of  a  system  to  predict  which  runway  will  be  in  use  at  Congonhas 
 Airport  (SBSP)  using  a  Gradient  Boosting  technique,  called  LightGBM.  A  classification  model 
 based  on  LightGBM  was  developed  using  data  from  the  Meteorological  Aerodrome  Report 
 (METAR),  Terminal  Aerodrome  Forecast  (TAF),  and  Weather  Research  and  Forecasting  (WRF). 
 The  model  makes  predictions  about  possible  runway  reconfigurations,  deciding  which  side  of  the 
 runway  will  be  used  in  the  coming  hours.  With  this  data,  an  accuracy  of  98%  in  predictions  was 
 achieved  and  when  testing  the  model  on  a  period  outside  the  training  and  test  dataset,  an  accuracy 
 of  88%  was  obtained.  These  results  highlight  the  efficiency  of  the  developed  model  compared  to  the 
 currently  used  rule-based  methods,  which  achieved  approximately  81%,  according  to  related  works. 
 This  work  contributes  by  providing  a  better  quantification  of  the  influence  of  meteorological 
 variables  on  airspace  operations,  according  to  a  feature  importance  analysis,  which  can  support  a 
 more efficient and safer airspace activity planning. 
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 1.  INTRODUCTION 

 Airspace  control  is  a  complex  and  critical  challenge  due  to  the  involved  risks  and  the 
 continuous  increase  in  flight  demand,  estimated  at  4.3%  per  year  over  the  next  20  years  (ACI 
 World,  2023a).  This  growth  demands  that  regulatory  agencies  adapt  to  manage  a  higher  aircraft 
 volume  (ACI  World,  2023b).  In  this  context,  one  of  the  greatest  challenges  is  balancing  safety  and 
 efficiency,  as  an  extremely  safe  operation  can  be  inefficient,  while  a  flexible  operation  may  pose 
 risks. 

 The  efficient  use  of  airspace  economically  impacts  passengers  and  industry  workers.  In 
 2023,  more  than  112  million  passengers  flew  in  Brazil  (Poder360,  2023),  and  about  1  million 
 people  were  employed  in  this  sector  (IATA,  2018).  Inefficiencies,  such  as  delays  and  vectoring, 
 particularly  in  terminal  areas,  increase  operational  costs,  negatively  impacting  both  airlines  and 
 passengers.  It  is  estimated  that  the  average  cost  of  in-flight  delays  is  100  euros  per  minute 
 (EUROCONTROL, 2015), highlighting the need for optimization. 

 Multiple  variables,  such  as  weather  conditions  and  runway  reconfigurations,  affect  flight 
 punctuality.  Quantifying  the  influence  of  these  variables  is  challenging  for  humans  due  to  the 
 complexity  and  the  need  for  real-time  massive  data  processing  (Prandini  et  al.,  2011).  Machine 
 Learning can assist in extracting patterns from historical data to predict issues more accurately. 

 A  significant  problem  for  efficiency  in  terminal  areas  is  runway  reconfiguration.  This 
 process  involves  changing  landing  and  takeoff  operations  to  the  other  end  of  the  runway.  One  of  the 
 determining  factors  for  this  event  is  the  change  in  weather  conditions,  such  as  wind  direction  and 
 speed.  Runway  reconfiguration  is  critical  to  maintaining  the  safety  of  air  operations,  as  ideally, 
 airplanes  should  take  off  and  land  against  the  wind  to  achieve  proper  lift  and  ensure  safe 
 maneuvers.  Thus,  one  of  the  main  catalysts  for  runway  reconfiguration  is  tailwind,  that  is,  the  wind 
 component  in  the  same  direction  as  the  aircraft.  Congonhas  Airport  (SBSP)  has  two  parallel 
 runways,  with  the  thresholds:  17,  the  main  threshold,  which  is  most  used  under  normal  conditions, 
 and  35,  the  opposite  threshold.  Anticipating  these  reconfigurations  can  allow  for  adequate  planning 
 by responsible agencies to minimize negative impacts such as delays and congestion. 

 The  Airspace  Control  Institute  (ICEA)  has  a  runway  configuration  predictor  (ICEA,  2024) 
 that  uses  a  Rule-Based  Reasoning  approach  (Frye  et  al.,  1995)  built  from  ICA  100-37  definitions 
 (DECEA,  2020)  on  data  derived  from  the  Weather  Research  and  Forecasting  (WRF).  The  predictor 
 suggests  a  runway  reconfiguration  when  the  forecasted  tailwind  component  exceeds  6  kt  for  the 
 runway  in  operation.  With  this  approach,  81%  accuracy  was  achieved  using  a  method  that  does  not 
 perform  correlation  analysis  of  variables,  historical  behavior,  etc.  Therefore,  it  is  expected  that  a 
 machine  learning-based  predictor  can  improve  this  accuracy  by  better  understanding  the  influence 
 of other variables. 

 This  work  aims  to  develop  a  Machine  Learning  model  to  predict  the  runway  in  operation  at 
 Congonhas  Airport,  based  on  training  with  historical  data.  This  paper  contributes  to  research  in  this 
 field  by  proposing  a  methodology  to  train  and  evaluate  various  machine  learning  algorithms  for  the 
 proposed  task.  Additionally,  it  employs  data  preprocessing  techniques  that  can  be  used  to 
 standardize  the  representation  of  various  variables  and  allow  for  better  comparison  between  studies 
 in the literature. 

 2.  LITERATURE REVIEW 

 Given  the  number  of  variables  involved  in  air  traffic  management,  many  studies  seek  to  apply 
 AI  techniques  in  this  context,  with  different  approaches.  Broadly  and  initially,  Gosling  (1987) 
 proposes  various  areas  within  the  context  of  airspace  control  where  AI  could  contribute  and  yield 
 positive  results.  The  author  identifies  seven  possible  control  strategies  ranging  from  visual  and 
 electronic  collision  prevention  to  proposed  improvements  in  the  U.S.  air  traffic  control  systems, 
 strategies  in  which  aircraft  follow  predefined,  non-conflicting  trajectories.  AI  applications  are 



 grouped  into  seven  functional  areas  and  discuss  ways  to  incorporate  these  applications  into  different 
 control  strategies,  also  considering  implementation  issues  that  may  arise  in  the  course  of  applying 
 AI techniques for air traffic control. 

 Since  the  publication  of  this  work,  much  has  been  developed  in  the  aviation  industry,  and 
 currently,  there  is  increasingly  more  data  available  related  to  flights,  leading  some  studies  to  seek  to 
 extract  information  from  this  data  to  assist  in  air  traffic  management.  In  this  sense,  Murça  and 
 Hansman  (2019)  present  a  data-driven  framework  to  identify,  characterize,  and  predict  traffic  flow 
 patterns  in  the  terminal  area  of  multiple  airport  systems,  known  as  metroplexes.  This  framework 
 uses  machine  learning  methods  applied  to  historical  flight  trajectories,  weather  forecasts,  and  airport 
 operational  data.  Through  a  multi-layered  clustering  analysis,  the  study  identifies  recurring  patterns 
 of  runway  and  airspace  use,  as  well  as  relevant  decisive  factors,  and  develops  descriptive  models 
 for  metroplex  configuration  prediction  and  capacity  estimation.  Applied  to  the  New  York 
 metroplex,  this  framework  demonstrates  high  accuracy  in  predicting  traffic  flow  patterns  for 
 planning  horizons  of  up  to  eight  hours,  highlighting  the  importance  of  metroplex  configuration 
 prediction for better flow rate planning and, consequently, better traffic regulation. 

 Additionally,  other  studies  highlight  the  significant  influence  that  external  factors  have  on 
 flight  planning,  further  complicating  the  task  of  managing  air  traffic.  Oliveira  et  al.  (2021) 
 investigate  the  impacts  of  weather  conditions  on  the  punctuality  of  domestic  flights  in  Brazil.  Using 
 historical  flight  schedules  and  weather  data,  the  authors  estimate  a  logit  model  to  analyze  the  effects 
 of  variables  such  as  visibility,  ceiling  height,  wind  gusts,  and  precipitation  on  the  probability  of 
 delays.  The  study  concludes  that  adverse  weather  conditions  significantly  increase  the  likelihood  of 
 delays,  contributing  to  a  better  understanding  and  management  of  weather  impacts  on  flight 
 punctuality. 

 Still  in  the  context  of  runway  conditions,  Midtfjord,  De  Bin,  and  Huseby  (2021)  developed  a 
 decision  support  system  for  safer  aircraft  landings,  using  XGBoost  to  predict  these  conditions.  This 
 system  combines  classification  and  regression  models  trained  with  weather  and  runway  data, 
 achieving  high  accuracy  and  providing  explainable  predictions  through  techniques  such  as  SHAP 
 (SHapley Additive exPlanations). 

 Another  significant  work  is  by  Herrema  et  al.  (2019),  who  also  use  Gradient  Boosting,  but  to 
 predict  runway  exit  times  in  Vienna,  i.e.,  how  long  it  will  take  for  the  aircraft  to  leave  the  runway 
 after  landing.  Applying  the  technique  to  54,679  arrival  flights  and  analyzing  scenarios  that  impact 
 runway  use,  this  model  achieved  79%  accuracy,  demonstrating  the  applicability  of  Gradient 
 Boosting in airport contexts to predict operational changes and improve efficiency. 

 Finally,  Lau  (2021)  specifically  focuses  on  predicting  transition  times  during  runway 
 reconfiguration  using  ensemble  methods  such  as  Random  Forest  Regressor,  AdaBoost,  and 
 Gradient  Tree  Boosting.  The  study  showed  that  these  methods  could  achieve  R2  scores  of  at  least 
 0.8,  providing  accurate  predictions  for  runway  configuration  changes  based  on  dynamic  conditions 
 like wind and clouds. 

 3.  MATERIALS AND METHODS 

 3.1.  E  XPERIMENTAL  D  ATA 

 The  data  used  in  the  development  of  the  predictive  model  for  runway  reconfiguration,  from 
 training  to  testing,  were  collected  from  different  sources.  It  is  worth  noting  that  the  period  sought 
 for  training  and  testing  was  from  12/28/2023  to  04/14/2024,  limited  by  the  available  WRF  data  set. 
 A  total  of  20,000  time  instances  (discretized  into  15-minute  intervals)  were  observed,  with  runway 
 17  being  in  use  for  14,942  of  these  instances  and  runway  35  for  the  remaining  5,058  instances.  In 
 this  sample,  there  were  a  total  of  62  reconfigurations  from  runway  17  to  35  and  62  reconfigurations 
 from 35 to 17. A brief explanation of the data used is presented below: 

 ●  Weather  Research  and  Forecasting:  The  WRF  data  set  is  the  result  of  a  numerical 
 weather  prediction  model  developed  to  provide  detailed,  high-resolution  simulations  of 



 weather  conditions.  The  variables  used  were  Wind  Speed,  Wind  Direction,  and  Tailwind 
 Component, generated for moments spaced 15 minutes apart; 

 ●  Meteorological  Aerodrome  Report:  METAR  is  a  routine  weather  observation  report 
 used  in  aviation  to  provide  information  on  weather  conditions  at  aerodromes.  Issued 
 every  hour,  the  METAR  includes  data  on  wind  speed,  visibility,  clouds,  temperature, 
 and pressure; 

 ●  Terminal  Aerodrome  Forecast:  TAF  is  a  weather  forecast  for  an  aerodrome,  issued 
 every  6  hours.  It  provides  detailed  information  about  the  expected  weather  conditions 
 for the next 24 to 30 hours, including wind, visibility, and clouds; 

 ●  Runway  Reconfiguration  History:  Originating  from  tower  data,  the  runway 
 configuration  history  provides  the  sequence  of  landings  performed  at  the  aerodrome, 
 including  the  times  and  the  respective  runway  used  (17  or  35,  in  the  case  of 
 Congonhas). 

 3.2.  D  ATA  P  REPROCESSING 

 After  collection,  the  data  were  integrated  using  WRF  as  the  reference  due  to  its  higher 
 sampling  frequency  (data  every  15  minutes).  The  METAR  and  TAF  were  aligned  with  the  nearest 
 preceding  hour  for  each  WRF  data  point  to  simulate  a  real-time  environment,  organizing  the  data  as 
 they  would  be  available  in  a  production  setting.  Finally,  the  runway  reconfiguration  history  was 
 indexed by the runway in use at the reference time of each WRF data point. 

 After  integration,  preprocessing  was  conducted  to  prepare  the  data  for  the  machine  learning 
 models to be tested, which included: 

 ●  Transforming  date  and  time  data  into  the  time  difference  between  the  reference  dates  of 
 the  integrated  data  sets,  to  allow  the  models  to  properly  understand  the  relevance  of 
 each  variable.  For  example,  if  a  METAR  data  from  01:00  is  associated  with  a  WRF  data 
 from  01:45,  a  column  is  created  with  information  on  the  temporal  distance  between 
 these  variables,  i.e.,  45  minutes.  This  information  can  be  useful  for  the  model  to 
 interpret  the  importance  of  the  data,  i.e.,  a  METAR  data  from  45  minutes  ago  is  less 
 relevant  than  a  data  from  15  minutes  ago.  This  feature  was  called 

 ;  𝑡𝑖𝑚𝑒  _  𝑑𝑖𝑓𝑓  _  𝑝𝑟𝑒𝑣  _  𝑎𝑛𝑑  _  𝑟𝑒𝑓 

 ●  Applying the One-Hot Encoding technique to categorical variables; 

 ●  Normalizing  numerical  variables  using  the  standard  scaler  method.  This  representation 
 usually  improves  model  performance  (Pedregosa,  2011).  The  normalization  scale  was 
 saved to ensure consistency in the transformation of new test data sets. 

 3.3.  M  ACHINE  L  EARNING  P  IPELINE 

 After  the  data  were  prepared  for  input  into  the  model,  the  next  step  was  to  choose  the 
 classification  technique  to  be  employed.  For  this  purpose,  27  classification  models  were  compared 
 (following  the  methodology  of  Pandala  et  al.  (2022),  which  involves  minimal  model 
 parameterization)  according  to  their  respective  performances.  The  model  that  achieved  the  highest 
 accuracy  was  LightGBM  (Ke  et  al.  2017).  Additionally,  some  tools  developed  in  ICEA  initiatives 
 have  shown  good  results  for  similar  tasks  using  LightGBM,  such  as  in  Teles  and  Zaneti  (2024). 
 Therefore,  these  factors,  combined  with  its  other  advantages  described  in  previous  sections,  led  to 
 LightGBM  being  chosen  for  the  classification  task  in  this  work.  Following  this  decision,  the  model 
 underwent  refinement  in  hyperparameter  selection  to  seek  pseudo-optimal  performance,  as  will  be 
 explained below. 



 To  optimize  hyperparameters  and  train  the  model,  it  was  necessary  to  partition  the  data  set 
 using  an  80/20  Holdout,  where  80%  of  the  data  were  used  as  the  training  set  and  20%  as  the  test  set. 
 The  training  set,  containing  16,000  examples,  was  used  to  adjust  the  model's  parameters  to  enable 
 the  learning  of  existing  patterns.  The  test  set,  with  4,000  examples,  was  used  for  the  final  evaluation 
 of  the  model.  It  is  important  to  note  that  this  set  was  not  used  during  training  or  hyperparameter 
 tuning, ensuring a fair and unbiased evaluation of the model's performance. 

 The  optimization  of  the  LightGBM  model’s  performance  was  carried  out  using  the 
 Randomized  Search  technique  (Bergstra  et  al.  2012),  aimed  at  finding  the  best  hyperparameters. 
 This  method  was  chosen  due  to  its  good  performance  in  optimization  (Bergstra  et  al.  2012).  This 
 process  involved  defining  a  distribution  of  hyperparameters:  Leaves  Number,  Learning  Rate, 
 Feature  Fraction,  Bagging  Fraction,  maximum  tree  depth,  and  the  regularization  parameters 
 lambda_l1  and  l2.  The  search  was  conducted  using  cross-validation  with  the  K-Fold  method 
 (Kohavi,  1995)  with  K=5  to  ensure  the  robustness  of  the  results.  After  training  and  evaluating  the 
 accuracy  of  all  hyperparameter  combinations,  the  set  that  achieved  the  highest  accuracy  on  the 
 validation set was selected. 

 Based  on  the  selected  hyperparameters,  the  LightGBM  model  was  retrained  using  the  entire 
 training  set,  not  just  80%  as  in  the  5-fold  cross-validation.  This  retraining  policy  allows  the 
 optimized  model  to  enhance  its  learning  capacity  with  the  complete  training  set.  It  is  worth  noting 
 that  the  training  was  conducted  with  the  goal  of  minimizing  binary  error,  iteratively  adjusting  the 
 model parameters to improve its performance. 

 4.  RESULTS AND DISCUSSIONS 

 4.1.  M  ODEL  P  ERFORMANCE 

 The  hyperparameter  search  phase  yielded  the  following  results:  101  for  Leaves  Number, 
 0.11  for  Learning  Rate,  0.79  for  Feature  Fraction,  0.92  for  Bagging  Fraction,  18  for  Maximum  Tree 
 Depth,  0.57  for  lambda_l1,  and  0.52  for  lambda_l2.  After  the  process  of  finding  the  best  model  and 
 subsequent  training,  as  explained  in  Section  3,  the  accuracy  obtained  with  the  best  hyperparameters 
 was  98%,  indicating  the  model's  ability  to  accurately  predict  runway  reconfiguration  at  Congonhas 
 Airport. The model's training curve can be seen in Figure 1. 

 Figure 1:  Training curve for the best model found  by the Randomized Search. 

 Additionally,  the  intermediate  results  of  the  cross-validation  can  be  seen  in  Figure  2,  which 
 shows  the  accuracy  obtained  by  each  of  the  5  folds  in  their  respective  validation  sets.  These  values 
 result in an average accuracy of 82% with a standard deviation of 2%. 



 Figure 2:  Accuracy of the different folds of the cross-validation. 

 Analyzing  the  training  curve  in  Figure  1,  it  is  noted  that  learning  occurred  as  expected,  with 
 the  binary  error  decreasing  with  each  iteration  and  stabilizing.  Moreover,  the  results  obtained  show 
 that  the  LightGBM  model  is  capable  of  predicting  runway  reconfiguration  with  good  accuracy. 
 However,  to  test  the  model  in  an  even  more  unbiased  manner,  a  final  test  was  conducted  with  a 
 dataset  outside  the  period  from  28/12/2022  to  14/04/2023,  which  was  used  for  training  and  testing, 
 to  evaluate  the  model's  generalization  capability.  Thus,  the  model  was  tested  on  the  interval  from 
 15/04/2023  to  15/05/2023,  where  it  achieved  an  accuracy  of  88%  and  an  F1-Score  of  86%,  with  the 
 classification results presented in the confusion matrix of Figure 3. 

 Figure 3:  Confusion Matrix for the classification  performed on the new dataset. 

 One  of  the  problems  when  attempting  to  perform  classification  is  the  potential  imbalance  of 
 the  model,  which  can  bias  its  decision  and  end  up  favoring  one  class  over  another.  However, 
 analyzing  Figure  3,  we  can  see  that  the  model  is  making  balanced  classifications  and,  when  an  error 
 occurs, it does not do so disproportionately for a specific class. 

 When  analyzing  the  drop  in  accuracy  from  98%  to  88%,  it  is  noted  that  the  effect  of 
 distribution  shift  may  be  occurring,  which  refers  to  the  difference  in  behavior  between  the  test  data 
 and  the  new  data  exposed  to  the  model.  This  may  indicate  that  the  problem  has  characteristics  that 



 vary  over  time,  similar  to  a  seasonality  effect,  meaning  the  data  from  April  and  May  may  behave 
 differently  from  the  data  from  December  to  March.  However,  analyzing  Figure  2,  it  is  noted  that  the 
 cross-validation  occurred  as  expected,  since  the  accuracies  of  each  fold  are  relatively  similar,  not 
 indicating  any  anomalous  behavior.  Additionally,  it  is  expected  that  the  accuracy  of  the  best  fold 
 would  be  better  than  that  of  the  final  model,  since  the  accuracies  of  the  folds  are  measured  on  their 
 own validation sets. 

 4.2.  F  EATURE  I  MPORTANCE 

 The  calculation  of  feature  importance  is  based  on  a  sensitivity  analysis  of  the  trained 
 model's  loss  function  concerning  each  input  variable.  This  was  done  to  better  understand  the 
 decisions made by the model. The importance of each variable is shown in Figure 4. 

 Figure 4:  Importance ranking of each feature for the  model. 

 From  Figure  4,  greater  explainability  of  the  developed  model  can  be  obtained.  The  analysis 
 shows  that  the  standout  features  among  those  used  as  input  data  are  the  wind  from  TAF,  visibility 
 from  METAR,  wind  from  METAR,  and  .  The  fact  that  the  METAR  and  𝑡𝑖𝑚𝑒  _  𝑑𝑖𝑓𝑓  _  𝑝𝑟𝑒𝑣  _  𝑎𝑛𝑑  _  𝑟𝑒𝑓 
 TAF  variables  proved  to  be  more  important  justifies  the  model's  better  performance  compared  to 
 related  works,  given  that  the  model  presented  in  ICEA  (2024)  uses  only  WRF  data.  The  importance 
 of  the  feature  ,  validates  the  proposed  data  processing  methodology,  𝑡𝑖𝑚𝑒  _  𝑑𝑖𝑓𝑓  _  𝑝𝑟𝑒𝑣  _  𝑎𝑛𝑑  _  𝑟𝑒𝑓 
 since  this  variable  is  calculated  to  suggest  the  relevance  of  the  predicted  variables  based  on  the 
 reference  time,  as  explained  in  Section  2.  Furthermore,  the  fact  that  the  most  important  feature  for 
 the  model  was  the  wind  from  TAF  aligns  with  the  ICA  100-37/2020,  where  wind  is  one  of  the  main 
 characteristics to be considered for defining the runway in use (DECEA, 2020). 

 5.  CONCLUSION 

 This  study  developed  and  evaluated  a  predictive  model  based  on  LightGBM  to  forecast 
 runway  configuration  at  Congonhas  Airport,  using  meteorological  data  from  sources  such  as 
 METAR,  TAF,  and  WRF.  The  model  achieved  an  accuracy  of  98%  during  training  and  88%  on  an 



 external  test  dataset,  demonstrating  its  unbiased  prediction  capability  of  the  runway  to  be  used 
 based  on  the  input  data.  These  results  highlight  a  significant  improvement  over  conventional 
 rule-based methods, which achieved about 81% accuracy, as presented in related works. 

 The  variable  importance  analysis  highlighted  wind  as  a  critical  factor  in  determining  runway 
 selection,  aligning  with  the  ICA  100-37  guidelines  and  contributing  to  more  efficient  and  safer 
 airport  operations  planning.  Moreover,  the  use  of  advanced  machine  learning  techniques  enabled  a 
 more  detailed  and  precise  analysis  of  the  complex  interaction  between  meteorological  variables. 
 Future  research  could  further  explore  the  adaptation  and  expansion  of  these  models  to  other  airports 
 and operational scenarios, considering different variables and specific conditions of each location. 
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