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ABSTRACT

The complexity and criticality of airspace control, coupled with the increasing demand for
flights, highlight the need for advanced tools to optimize and secure operations. Additionally, many
variables influence the air traffic scenario and, given the difficulty of analytically assessing the
impact of each variable, a possible strategy is to use Machine Learning techniques to more
accurately assign the weight of each factor, by processing historical data. In this context,
considering that one of the variables that most influences air traffic is runway reconfiguration, this
paper presents the development of a system to predict which runway will be in use at Congonhas
Airport (SBSP) using a Gradient Boosting technique, called LightGBM. A classification model
based on LightGBM was developed using data from the Meteorological Aerodrome Report
(METAR), Terminal Aerodrome Forecast (TAF), and Weather Research and Forecasting (WRF).
The model makes predictions about possible runway reconfigurations, deciding which side of the
runway will be used in the coming hours. With this data, an accuracy of 98% in predictions was
achieved and when testing the model on a period outside the training and test dataset, an accuracy
of 88% was obtained. These results highlight the efficiency of the developed model compared to the
currently used rule-based methods, which achieved approximately 81%, according to related works.
This work contributes by providing a better quantification of the influence of meteorological
variables on airspace operations, according to a feature importance analysis, which can support a
more efficient and safer airspace activity planning.
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1. INTRODUCTION

Airspace control is a complex and critical challenge due to the involved risks and the
continuous increase in flight demand, estimated at 4.3% per year over the next 20 years (ACI
World, 2023a). This growth demands that regulatory agencies adapt to manage a higher aircraft
volume (ACI World, 2023b). In this context, one of the greatest challenges is balancing safety and
efficiency, as an extremely safe operation can be inefficient, while a flexible operation may pose
risks.

The efficient use of airspace economically impacts passengers and industry workers. In
2023, more than 112 million passengers flew in Brazil (Poder360, 2023), and about 1 million
people were employed in this sector (IATA, 2018). Inefficiencies, such as delays and vectoring,
particularly in terminal areas, increase operational costs, negatively impacting both airlines and
passengers. It is estimated that the average cost of in-flight delays is 100 euros per minute
(EUROCONTROL, 2015), highlighting the need for optimization.

Multiple variables, such as weather conditions and runway reconfigurations, affect flight
punctuality. Quantifying the influence of these variables is challenging for humans due to the
complexity and the need for real-time massive data processing (Prandini et al., 2011). Machine
Learning can assist in extracting patterns from historical data to predict issues more accurately.

A significant problem for efficiency in terminal areas is runway reconfiguration. This
process involves changing landing and takeoff operations to the other end of the runway. One of the
determining factors for this event is the change in weather conditions, such as wind direction and
speed. Runway reconfiguration is critical to maintaining the safety of air operations, as ideally,
airplanes should take off and land against the wind to achieve proper lift and ensure safe
maneuvers. Thus, one of the main catalysts for runway reconfiguration is tailwind, that is, the wind
component in the same direction as the aircraft. Congonhas Airport (SBSP) has two parallel
runways, with the thresholds: 17, the main threshold, which is most used under normal conditions,
and 35, the opposite threshold. Anticipating these reconfigurations can allow for adequate planning
by responsible agencies to minimize negative impacts such as delays and congestion.

The Airspace Control Institute (ICEA) has a runway configuration predictor (ICEA, 2024)
that uses a Rule-Based Reasoning approach (Frye et al., 1995) built from ICA 100-37 definitions
(DECEA, 2020) on data derived from the Weather Research and Forecasting (WRF). The predictor
suggests a runway reconfiguration when the forecasted tailwind component exceeds 6 kt for the
runway in operation. With this approach, 81% accuracy was achieved using a method that does not
perform correlation analysis of variables, historical behavior, etc. Therefore, it is expected that a
machine learning-based predictor can improve this accuracy by better understanding the influence
of other variables.

This work aims to develop a Machine Learning model to predict the runway in operation at
Congonhas Airport, based on training with historical data. This paper contributes to research in this
field by proposing a methodology to train and evaluate various machine learning algorithms for the
proposed task. Additionally, it employs data preprocessing techniques that can be used to
standardize the representation of various variables and allow for better comparison between studies
in the literature.

2. LITERATURE REVIEW

Given the number of variables involved in air traffic management, many studies seek to apply
Al techniques in this context, with different approaches. Broadly and initially, Gosling (1987)
proposes various areas within the context of airspace control where AI could contribute and yield
positive results. The author identifies seven possible control strategies ranging from visual and
electronic collision prevention to proposed improvements in the U.S. air traffic control systems,
strategies in which aircraft follow predefined, non-conflicting trajectories. Al applications are
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grouped into seven functional areas and discuss ways to incorporate these applications into different
control strategies, also considering implementation issues that may arise in the course of applying
Al techniques for air traffic control.

Since the publication of this work, much has been developed in the aviation industry, and
currently, there is increasingly more data available related to flights, leading some studies to seek to
extract information from this data to assist in air traffic management. In this sense, Murca and
Hansman (2019) present a data-driven framework to identify, characterize, and predict traffic flow
patterns in the terminal area of multiple airport systems, known as metroplexes. This framework
uses machine learning methods applied to historical flight trajectories, weather forecasts, and airport
operational data. Through a multi-layered clustering analysis, the study identifies recurring patterns
of runway and airspace use, as well as relevant decisive factors, and develops descriptive models
for metroplex configuration prediction and capacity estimation. Applied to the New York
metroplex, this framework demonstrates high accuracy in predicting traffic flow patterns for
planning horizons of up to eight hours, highlighting the importance of metroplex configuration
prediction for better flow rate planning and, consequently, better traffic regulation.

Additionally, other studies highlight the significant influence that external factors have on
flight planning, further complicating the task of managing air traffic. Oliveira et al. (2021)
investigate the impacts of weather conditions on the punctuality of domestic flights in Brazil. Using
historical flight schedules and weather data, the authors estimate a logit model to analyze the effects
of variables such as visibility, ceiling height, wind gusts, and precipitation on the probability of
delays. The study concludes that adverse weather conditions significantly increase the likelihood of
delays, contributing to a better understanding and management of weather impacts on flight
punctuality.

Still in the context of runway conditions, Midtfjord, De Bin, and Huseby (2021) developed a
decision support system for safer aircraft landings, using XGBoost to predict these conditions. This
system combines classification and regression models trained with weather and runway data,
achieving high accuracy and providing explainable predictions through techniques such as SHAP
(SHapley Additive exPlanations).

Another significant work is by Herrema et al. (2019), who also use Gradient Boosting, but to
predict runway exit times in Vienna, i.e., how long it will take for the aircraft to leave the runway
after landing. Applying the technique to 54,679 arrival flights and analyzing scenarios that impact
runway use, this model achieved 79% accuracy, demonstrating the applicability of Gradient
Boosting in airport contexts to predict operational changes and improve efficiency.

Finally, Lau (2021) specifically focuses on predicting transition times during runway
reconfiguration using ensemble methods such as Random Forest Regressor, AdaBoost, and
Gradient Tree Boosting. The study showed that these methods could achieve R2 scores of at least
0.8, providing accurate predictions for runway configuration changes based on dynamic conditions
like wind and clouds.

3. MATERIALS AND METHODS
3.1. EXpERIMENTAL DATA

The data used in the development of the predictive model for runway reconfiguration, from
training to testing, were collected from different sources. It is worth noting that the period sought
for training and testing was from 12/28/2023 to 04/14/2024, limited by the available WRF data set.
A total of 20,000 time instances (discretized into 15-minute intervals) were observed, with runway
17 being in use for 14,942 of these instances and runway 35 for the remaining 5,058 instances. In
this sample, there were a total of 62 reconfigurations from runway 17 to 35 and 62 reconfigurations
from 35 to 17. A brief explanation of the data used is presented below:

e Weather Research and Forecasting: The WRF data set is the result of a numerical
weather prediction model developed to provide detailed, high-resolution simulations of
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weather conditions. The variables used were Wind Speed, Wind Direction, and Tailwind
Component, generated for moments spaced 15 minutes apart;

e Meteorological Aerodrome Report: METAR is a routine weather observation report
used in aviation to provide information on weather conditions at aerodromes. Issued
every hour, the METAR includes data on wind speed, visibility, clouds, temperature,
and pressure;

e Terminal Aerodrome Forecast: TAF is a weather forecast for an aerodrome, issued
every 6 hours. It provides detailed information about the expected weather conditions
for the next 24 to 30 hours, including wind, visibility, and clouds;

e Runway Reconfiguration History: Originating from tower data, the runway
configuration history provides the sequence of landings performed at the aerodrome,
including the times and the respective runway used (17 or 35, in the case of
Congonhas).

3.2. DATA PREPROCESSING

After collection, the data were integrated using WRF as the reference due to its higher
sampling frequency (data every 15 minutes). The METAR and TAF were aligned with the nearest
preceding hour for each WRF data point to simulate a real-time environment, organizing the data as
they would be available in a production setting. Finally, the runway reconfiguration history was
indexed by the runway in use at the reference time of each WRF data point.

After integration, preprocessing was conducted to prepare the data for the machine learning
models to be tested, which included:

e Transforming date and time data into the time difference between the reference dates of
the integrated data sets, to allow the models to properly understand the relevance of
each variable. For example, if a METAR data from 01:00 is associated with a WRF data
from 01:45, a column is created with information on the temporal distance between
these variables, i.e., 45 minutes. This information can be useful for the model to
interpret the importance of the data, i.e., a METAR data from 45 minutes ago is less
relevant than a data from 15 minutes ago. This feature was called
time_dif f_prev_and_ref;

e Applying the One-Hot Encoding technique to categorical variables;

e Normalizing numerical variables using the standard scaler method. This representation
usually improves model performance (Pedregosa, 2011). The normalization scale was
saved to ensure consistency in the transformation of new test data sets.

3.3. MACHINE LEARNING PIPELINE

After the data were prepared for input into the model, the next step was to choose the
classification technique to be employed. For this purpose, 27 classification models were compared
(following the methodology of Pandala et al. (2022), which involves minimal model
parameterization) according to their respective performances. The model that achieved the highest
accuracy was LightGBM (Ke et al. 2017). Additionally, some tools developed in ICEA initiatives
have shown good results for similar tasks using LightGBM, such as in Teles and Zaneti (2024).
Therefore, these factors, combined with its other advantages described in previous sections, led to
LightGBM being chosen for the classification task in this work. Following this decision, the model
underwent refinement in hyperparameter selection to seek pseudo-optimal performance, as will be
explained below.
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To optimize hyperparameters and train the model, it was necessary to partition the data set
using an 80/20 Holdout, where 80% of the data were used as the training set and 20% as the test set.
The training set, containing 16,000 examples, was used to adjust the model's parameters to enable
the learning of existing patterns. The test set, with 4,000 examples, was used for the final evaluation
of the model. It is important to note that this set was not used during training or hyperparameter
tuning, ensuring a fair and unbiased evaluation of the model's performance.

The optimization of the LightGBM model’s performance was carried out using the
Randomized Search technique (Bergstra et al. 2012), aimed at finding the best hyperparameters.
This method was chosen due to its good performance in optimization (Bergstra et al. 2012). This
process involved defining a distribution of hyperparameters: Leaves Number, Learning Rate,
Feature Fraction, Bagging Fraction, maximum tree depth, and the regularization parameters
lambda_l1 and 12. The search was conducted using cross-validation with the K-Fold method
(Kohavi, 1995) with K=5 to ensure the robustness of the results. After training and evaluating the
accuracy of all hyperparameter combinations, the set that achieved the highest accuracy on the
validation set was selected.

Based on the selected hyperparameters, the LightGBM model was retrained using the entire
training set, not just 80% as in the 5-fold cross-validation. This retraining policy allows the
optimized model to enhance its learning capacity with the complete training set. It is worth noting
that the training was conducted with the goal of minimizing binary error, iteratively adjusting the
model parameters to improve its performance.

4. RESULTS AND DISCUSSIONS
4.1. MopEL PERFORMANCE

The hyperparameter search phase yielded the following results: 101 for Leaves Number,
0.11 for Learning Rate, 0.79 for Feature Fraction, 0.92 for Bagging Fraction, 18 for Maximum Tree
Depth, 0.57 for lambda_l1, and 0.52 for lambda_I2. After the process of finding the best model and
subsequent training, as explained in Section 3, the accuracy obtained with the best hyperparameters
was 98%, indicating the model's ability to accurately predict runway reconfiguration at Congonhas
Airport. The model's training curve can be seen in Figure 1.

Best Model Training Curve
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Figure 1: Training curve for the best model found by the Randomized Search.

Additionally, the intermediate results of the cross-validation can be seen in Figure 2, which
shows the accuracy obtained by each of the 5 folds in their respective validation sets. These values
result in an average accuracy of 82% with a standard deviation of 2%.
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Cross Validation Scores by Folds
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Figure 2: Accuracy of the different folds of the cross-validation.

Analyzing the training curve in Figure 1, it is noted that learning occurred as expected, with
the binary error decreasing with each iteration and stabilizing. Moreover, the results obtained show
that the LightGBM model is capable of predicting runway reconfiguration with good accuracy.
However, to test the model in an even more unbiased manner, a final test was conducted with a
dataset outside the period from 28/12/2022 to 14/04/2023, which was used for training and testing,
to evaluate the model's generalization capability. Thus, the model was tested on the interval from
15/04/2023 to 15/05/2023, where it achieved an accuracy of 88% and an F1-Score of 86%, with the
classification results presented in the confusion matrix of Figure 3.

Confusion Matrix
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Figure 3: Confusion Matrix for the classification performed on the new dataset.

One of the problems when attempting to perform classification is the potential imbalance of
the model, which can bias its decision and end up favoring one class over another. However,
analyzing Figure 3, we can see that the model is making balanced classifications and, when an error
occurs, it does not do so disproportionately for a specific class.

When analyzing the drop in accuracy from 98% to 88%, it is noted that the effect of
distribution shift may be occurring, which refers to the difference in behavior between the test data
and the new data exposed to the model. This may indicate that the problem has characteristics that
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vary over time, similar to a seasonality effect, meaning the data from April and May may behave
differently from the data from December to March. However, analyzing Figure 2, it is noted that the
cross-validation occurred as expected, since the accuracies of each fold are relatively similar, not
indicating any anomalous behavior. Additionally, it is expected that the accuracy of the best fold
would be better than that of the final model, since the accuracies of the folds are measured on their
own validation sets.

4.2. FEATURE IMPORTANCE

The calculation of feature importance is based on a sensitivity analysis of the trained
model's loss function concerning each input variable. This was done to better understand the
decisions made by the model. The importance of each variable is shown in Figure 4.
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Figure 4: Importance ranking of each feature for the model.

From Figure 4, greater explainability of the developed model can be obtained. The analysis
shows that the standout features among those used as input data are the wind from TAF, visibility
from METAR, wind from METAR, and time_dif f_prev_and_ref. The fact that the METAR and
TAF variables proved to be more important justifies the model's better performance compared to
related works, given that the model presented in ICEA (2024) uses only WRF data. The importance
of the feature time_dif f_prev_and_ref, validates the proposed data processing methodology,
since this variable is calculated to suggest the relevance of the predicted variables based on the
reference time, as explained in Section 2. Furthermore, the fact that the most important feature for
the model was the wind from TAF aligns with the ICA 100-37/2020, where wind is one of the main
characteristics to be considered for defining the runway in use (DECEA, 2020).

5. CONCLUSION

This study developed and evaluated a predictive model based on LightGBM to forecast
runway configuration at Congonhas Airport, using meteorological data from sources such as
METAR, TAF, and WRF. The model achieved an accuracy of 98% during training and 88% on an
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external test dataset, demonstrating its unbiased prediction capability of the runway to be used
based on the input data. These results highlight a significant improvement over conventional
rule-based methods, which achieved about 81% accuracy, as presented in related works.

The variable importance analysis highlighted wind as a critical factor in determining runway
selection, aligning with the ICA 100-37 guidelines and contributing to more efficient and safer
airport operations planning. Moreover, the use of advanced machine learning techniques enabled a
more detailed and precise analysis of the complex interaction between meteorological variables.
Future research could further explore the adaptation and expansion of these models to other airports
and operational scenarios, considering different variables and specific conditions of each location.
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