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ABSTRACT

The increasing global air traffic requires efficient management systems. One way to achieve that is
optimizing arrival sequences, reducing flight duration, and enhancing operational safety. A method
to address these requirements is a sequencing technique called Point Merge system (PM). This
study analyzes the adherence to the PM at Guarulhos International Airport (GRU), aiming to
understand the peak and off-peak usage times, and provide a detailed sector-by-sector analysis. Two
methods were applied for trajectories classification according to their adherence to the PM: A
method based on the 8th ICAO’s Key Performance Indicator (KPI08-based method), which consists
of thresholding based on additional time in terminal area, and clustering by the agglomerative
method using trajectories data. The experimental data were collected from: KPI08 dataset, airport
movements and radar synthesis, focusing on medium-sized commercial aircraft. The total number
of flights analyzed was 2427. The results obtained indicate a better performance of the KPI08-based
method, which achieved a more defined representation between the classified trajectory groups. The
results highlighted a behavior pattern in relation to peak and off-peak times in the use of PM in all
periods analyzed. Evaluating the North and West sectors, it was possible to show that some time
slots exhibited similar behaviors when using the KPI08-based method. The time slots 8h-9h and
18h-19h stand out as they show that more than 70% of flights execute the PM. The time slot
20h-22h showed similar behavior in both sectors, with approximately 50% of flights executing the
PM. This work contributes by proposing the KPI08-based method, an innovative method to classify
flights according to the adherence to the PM, which proved to be more accurate than the
agglomerative trajectory clustering method. Additionally, this study may indicate an improvement
in the arrival flow management at GRU, due to demand predictability. This predictability enables
better route planning, which may result in additional fuel reduction.
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1. INTRODUCTION AND BACKGROUND
The significant increase in global air traffic requires the implementation of more efficient

methods for managing the air traffic flow. According to the International Air Transport Association
(IATA), global air passenger numbers are expected to reach 8.2 billion by 2037, doubling from the
4.1 billion passengers in 2017 (IATA, 2018). One such method to address this growing demand is
the Point Merge system, an innovative air traffic sequencing technique designed to optimize aircraft
arrival sequences, reduce flight times, and enhance operational safety.

Point Merge operates efficiently under high traffic loads without the need for radar vectoring.
It relies on a specific Precision-Area Navigation (P-RNAV) route structure, comprising a merge
point and equidistant pre-defined legs known as sequencing legs. Sequencing is achieved through a
“direct-to” instruction to the merge point at the appropriate time. The sequencing legs are used to
delay aircraft only when necessary, a process known as path stretching. The length of these legs
reflects the required delay absorption capacity, ensuring a streamlined and predictable arrival flow.
This method simplifies controller tasks, reduces communication and workload, enhances pilot
situational awareness, and improves the predictability and efficiency of flight trajectories
(Eurocontrol, 2014). Figure 1 illustrates the Point Merge system and its components.

Figure 1 Point Merge structure. Source: Eurocontrol (2014).

The Point Merge system has been successfully implemented in various airports worldwide,
demonstrating its ability to improve airspace efficiency and minimize the environmental impact of
fuel consumption (Eurocontrol, 2014; ICAO, 2016). For example, a study conducted at Tokyo
International Airport (Haneda) highlighted that the Point Merge system improved sequencing
efficiency during peak traffic periods (Sakamoto et al., 2019)​. Similarly, a research at Dublin
Airport demonstrated that Point Merge significantly enhanced predictability and reduced fuel
consumption compared to traditional vectoring methods (Christien et al., 2017)​.

In Brazil, Guarulhos International Airport (GRU) stands as one of the busiest hubs in Latin
America, facing daily challenges associated with high traffic density. Analyzing the implementation
of the Point Merge system at GRU is therefore highly relevant to evaluate its benefits and
challenges in a complex and busy operational environment. Improper fuel loading decisions result
in carrying excessive weight during flight operation, which will burden the airline operation cost
and cause extra waste emission (Yi Lin et al. 2024). Therefore, the final goal of this study was to
understand the use of the Point Merge system to enable the possibility that, if it is not used during
certain periods of the day, aircraft would not need to carry extra fuel for it. This would save fuel,
reduce the load, lower flight costs, and potentially reduce ticket prices for passengers.

To classify the adherence to the point merge two distinct approaches were applied:
KPI08-based classification and Trajectory Clustering. The dataset used for both analyses included:
Radar data for each flight, as well as Control tower movement data for the airport. The time period
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analyzed was December 18, 2023, as a proof of concept, then the period from September 15 to 21,
2023, and finally the period from April 15 to 21, 2023, to cover different times of the year. The total
number of flights analyzed was 2,427.

The KPI08 is a Key Performance Indicator defined by ICAO (ICAO, 2023) that measures the
additional time in terminal area. It compares the time an aircraft spends in the terminal airspace
(within the 40NM cylinder, known as C40) with the time it would spend under ideal conditions,
called the unimpeded time. The unimpeded time is calculated based on past flights and is set as the
20th percentile time of this historical dataset. Thus, the difference between the actual time spent in
the Terminal Airspace and the unimpeded time is the KPI08. By analyzing the KPI08, we can
understand how much the flight was delayed compared to the ideal scenario.

Another type of analysis that can be conducted to determine the adherence to the Point
Merge is the study of aircraft trajectories. Related works suggest the use of unsupervised learning
for understanding trajectory patterns. Murça et al. (2016) and Gariel et al. (2011) highlight how the
utilization of the vast amount of available data on trajectories and their groupings can bring
considerable gains to air traffic efficiency. Moreover, different clustering techniques have been used
in other studies, such as DBSCAN (Bolić, 2022) and Deep Autoencoders and Gaussian Mixture
Models (Zeng et al., 2021), proving to be effective in clustering trajectories and extracting relevant
information from them.

This study aims to analyze the use of the Point Merge system in São Paulo terminal, with a
focus on GRU Airport, using time metrics and trajectory clusterization to identify usage patterns
and efficiency. This work contributes by proposing an innovative method to classify flights
according to the adherence to the point merge (KPI08-based method). The findings provide
valuable insights to improve local operation, to plan future implementations of the Point Merge
system in other airports and regions in Brazil, and to support the continuous evolution of air traffic
operations in the country (IATA, 2019).

2. METHODOLOGY
2.1. Data Collection and Processing

Data was collected from a combination of different sources, including KPI08 data, Control
towers movement), and radar data. By merging these datasets, it was possible to consolidate
information about the flights conducted on the studied dates: December 18, 2023, from September
15 to 21, 2023, and from April 15 to 21, 2023, as mentioned in the Introduction. These dates were
selected because they are considered typical periods of movement at airports, unaffected by national
festive events or holidays. Additionally, the data were filtered to include: only commercial
medium-sized aircraft (wake turbulence category ‘M’) to ensure data uniformity and avoid speed
variations that could affect the results; and only flights from Azul, Gol, and Latam airlines, aiming
to standardize the data, remove potential outliers, and result in a more representative dataset that
aligns with the goal of optimizing costs for the end user.

To use the trajectory data as input for clustering algorithms, the data was processed so that
each trajectory became an object for unsupervised learning. Thus, each latitude and longitude
coordinate, ordered over time, is an attribute of this object. To ensure each trajectory had the same
number of points over time, the number of points in each was truncated to the quantity that
encompassed all trajectories above the first quartile when ordered by the number of points. This
way, the data could be used in the algorithms.

Finally, it is worth noting that the analysis was separated by entry sectors into the Terminal
Airspace. For sector classification, the angle at which the aircraft entered the C100 (100NM
cylinder) was considered, measured from zero (North direction) and increasing clockwise. Figure 2
shows the sectorization used, based on the results presented by Lima et al. (2023), where
sectorizations in C40 were found using unsupervised machine learning from flight approach data at
Guarulhos. Thus, trajectories with an entry angle ( ) into the terminal area such thatθ

were considered as the North sector, were considered as the− 20° ≤ θ < 50° 50° ≤ θ < 180°



East sector, and were considered as the West sector. The study focused on the180° ≤ θ < 340°
North and West sectors, which effectively make use of the Point Merge system.

Figure 2 Flights arrived at GRU Airport on 18/12/23. North sector in light blue with trajectories in pink. East
sector in green with trajectories in red. West sector in yellow with trajectories in blue.

2.2. Metrics and Classification
2.2.1. KPI08-based method
Initially, the only classification parameter was the KPI08, which hindered the classification

in some cases since it can be difficult to distinguish a higher KPI08 due to the Point Merge contour
from one due to vectoring near the runway. As seen in the aeronautical chart procedures in Figure 2
(dashed lines), there is both the deviation of the Point Merge and a smaller arc closer to the runway,
both within the C40. Therefore, using only the additional time parameter within the C40 (KPI08)
did not yield good analysis results.

To overcome this problem, the 20NM cylinder, C20, was also considered. This allowed us to
separate the KPI08 time into time between C40 and C20, where the delay is more likely due to the
use of Point Merge, and time between C20 and landing, where the delay is due to the deviation
closer to the runway, not the Point Merge.

With this, the classification sought to separate the flights into three distinct classes:

● Class 1: Direct flights that do not use Point Merge or deviate near the runway;
● Class 2: Flights that do not use Point Merge but deviate near the runway;
● Class 3: Flights that use Point Merge and deviate near the runway, meaning slower flights.

To ensure that the classification based on the times from C40 and C20 reflected this
described classification, several empirical tests of classification intervals were performed, mainly
on the September 2023 days and later validated on the April 2023 days. After this, the classification
shown in Table 2 below was established.

Table 2 KPI08 classification based on times from C40 to C20 and from C20 to landing.

Sector KPI08 Class C40 to C20 time C20 to landing time

North

1 <= 350 <= 585s

2 <= 350 > 585s

3 > 350 -



2.2.2. Clustering
With the data divided into sectors, proof-of-concept tests of the clustering algorithm were

conducted using flights from only one day, specifically December 18, 2023. The algorithms tested
were DBSCAN and Agglomerative for the northern and western sectors of arriving flights at GRU.
To determine which algorithm to use in the final analysis, evaluation metrics of the classifications
were compared alongside a visual analysis of the results. Evaluations were performed using the
silhouette method, Davies-Bouldin index, and Calinski-Harabasz criterion. (Vendramim et al, 2010)
Thus, the hyperparameters were adjusted considering the results obtained, and ultimately, the best
clustering identified. The chosen algorithm was hierarchical agglomerative clustering, and the
optimal number of clusters was determined to be two, as testing by the elbow method revealed that
this configuration provided the highest information gain. Also, this configuration achieved the best
scores across the evaluation metrics mentioned above.

After selecting the best algorithm, it was applied to each main sector (North and West) for
the flights defined on the study dates, from September 15 to 21, 2023, and from April 15 to 21,
2023. The evaluative metrics of the clusters were also applied to the new data to verify the validity
of the choice of the best algorithm in the proof of concept. Thus, the choice of the Agglomerative
algorithm, a type of hierarchical algorithm, was confirmed. The tree of the hierarchical algorithm
was pruned with the number of clusters set to 2, to classify the trajectories as either having
performed the merging point or not.

3. RESULTS
3.1. KPI08-based classification

In this section, the results obtained from the classification using the KPI08 metric for each
sector and period considered will be presented.

3.1.1. April 15-20, 2023
This subsection details the classification of flights based on the KPI08 metric from April 15

to April 20, 2023. Figure 3 shows the classification of flights in the North (a) and West (b) sectors.
In the figure, the red color indicates the flights that performed the point merge, while the green and
blue colors represent the flights that did not perform the point merge, according to the classification
based on KPI08, as shown in Table 2. A total of 1,124 flights were observed for a 5-day sample in
April 2023. Of these, 55.60% (n=625) performed the point merge, whereas 44.40% (n=499) did not
perform the procedure in the North and West sectors.

Figure 3 Classification of flights (a) in the Northern sector and (b) in the Western sector from April 15, 2023, to
April 20, 2023.

West

1 <= 460s <= 550s

2 <= 460s > 550s

3 > 460s -



Figure 4 shows the average point merge utilization curves by time of day for each sector
studied. It is noteworthy that, in the time slots from 0h to 1h, 8h to 9h, 9h to 10h and 18h to 19h,
more than 70% (n=304) of the flights performed the point merge. While in the time slots from 3h to
5h, 12 flights were registered, none of which used the point merge. It is important to highlight that
93% (n=38) of the flights in the time slot from 8h to 9h, in the North sector, performed the point
merge. In contrast, in the time slot from 18h to 19h, 87% (n=39) of the flights performed the point
merge in the West sector, this being the time slot with the highest number of performances of this
maneuver in this sector.

Figure 4 Average percentage of Point Merge Utilization in the Northern and Western sector from April 15, 2023,
to April 20, 2023, by hour (UTC) of the day, according to the KPI08-based method.

3.1.2. September 15-20, 2023
Analogously, this subsection details the classification of flights based on the KPI08 metric

from September 15 to September 20, 2023. Figure 5 shows the classification of flights in sectors (a)
North and (b) West. A total of 1,303 flights were observed in the 5-day sample of September 2023.
Of these, 46.58% (n=607) performed the point merge, while 53.42% (n=696) did not perform the
point merge in the North and West sectors.

Figure 6 presents the average point merge utilization curves by time of day, in which the
results showed that the time slots from 0h to 1h, 8h to 9h, and 18h to 19h stood out, with more than
70% (n=285) of the flights performing the point merge. In particular, the time slot from 0h to 1h
stood out, with approximately 85% of the flights performing the point merge in both periods
analyzed. On the other hand, in the time slots from 2h to 3h and from 5h to 6h, 23 flights were
registered, in which none performed the point merge. In addition, it is important to highlight that in
the time slots from 0h to 1h and from 8h to 9h, 78% (n=107) of the flights in the North sector and
approximately 91% (n=108) of the flights in the West sector performed the point merge. Overall,
there was a difference of approximately 9% in the number of flights that did not perform the point
merge when comparing the 5-day sample from April with the sample from September.

Figure 5 Classification of flights (a) in the Northern sector and (b) in the Western sector from September 15,
2023, to September 20, 2023.



Figure 6 Average percentage of Point Merge Utilization in the Northern and Western sector from September 15,
2023, to September 20, 2023, by hour (UTC) of the day, according to the KPI08-based method.

3.2. Clustering
The Agglomerative Clustering algorithm was applied to the trajectory data described in

Section 3. The results are presented in the following subsections.

3.2.1. April 15-20, 2023
This subsection presents the application of the Agglomerative Clustering algorithm to flight

trajectories from April 15 to April 20, 2023. Figure 8 shows the flight clusters in the North (a) and
West (b) sectors from April 15 to 20, 2023. In the figure, the red color indicates the cluster of flights
that executed the point merge, while the green color represents the cluster of flights that did not
execute the point merge, according to the hierarchical cluster analysis. Of the 1007 flights analyzed,
it was observed that 38.53% (n=388) executed the point merge, while 61.47% (n=619) did not
execute, according to the defined clusters.

Figure 8 Clusters of flights (a) in the Northern sector and (b) in the Western sector from April 15, 2023, to April
20, 2023.

Figure 9 shows the average point merge usage curves by time of day, based on the defined
clusters. The results indicate that the intervals from 0h to 1h and 8h to 9h stand out, showing more
than 70% (n=50) of the flights that used Point Merge in the North sector. On the other hand, the
intervals from 3h to 6h, 11h to 12h and 20h to 21h registered flights that did not execute the point
merge. In the West sector, only the interval from 8h to 9h presented 73% (n=27) of the flights that
executed the point merge. In addition, the intervals from 4h to 7h and from 12h to 13h did not
register flights executing the point merge.



Figure 9 Average percentage of Point Merge Utilization in the Northern and Western sector from April 15,
2023, to April 20, 2023, by hour (UTC) of the day, according to the clustering method.

3.2.2. September 15-20, 2023
Similarly, this subsection details the classification of flights based on the cluster analysis

carried out from September 15 to 20, 2023. Figure 10 presents the classification of flights in the (a)
North and (b) West sectors. A total of 1,164 flights were observed in the 5-day sample of September
2023. Of these, 27.84% (n=324) performed the point merge, while 72.16% (n=840) did not perform
a point merge in the analyzed sectors.

We can observe that the results found for both tested time periods using the clustering
method are in agreement with those obtained by the terminal phase time metric presented in section
4.1. There is a higher presence of misclassifications, considering flights that adhered to the Point
Merge with shorter sequencing leg trajectories as not adherent. However, overall, the result found is
valid.

Figure 10 Clusters of flights (a) in the Northern sector and (b) in the Western sector from September 15, 2023,
to September 20, 2023.

Figure 11 shows the average point merge utilization curves by time of day, based on cluster
analysis. The results indicate that, in the North sector, no time slot had 70% of flights executing the
point merge. The time slot with the highest number of flights executing the point merge was from
8h to 9h, with 67.16% (n=45). On the other hand, the time slots from 2h-4h, 5h-6h, 11h-12h,
16h-17h, and 20h-21h did not register any flights executing the point merge. In the West sector, the
time slots from 9h-10h and 19h-20h had more than 70% (n=19) of flights using the point merge. On
the other hand, the time slots from 2h-3h, 6h-7h, 11h-12h, 17h-18h and 20h-22h did not register
flights using point merge.



Figure 11 Average percentage of Point Merge Utilization in the Northern and Western sector from September
15, 2023, to September 20, 2023, by hour (UTC) of the day, according to the clustering method.

4. DISCUSSIONS
After presenting the results, it is possible to obtain a behavioral profile of landing

movements at GRU regarding adherence to Point Merge. The curves, whose main characteristics
are the peak and off-peak intervals highlighted in Section 3, exhibit similar behavior, even though
they occur at different periods. This indicates that the analysis can be generalized to other periods of
the year. The main difference between the presented curves lies in the amplitude of the peaks. It is
observed that the curves obtained using the KPI08-based method are more binarizable for the
empirical threshold of 70%. Therefore, it can be determined that the KPI08-based method is more
appropriate for the task.

Evaluating the North and West sectors, it was possible to show that some time slots
exhibited similar behaviors when using the KPI08-based method. For example, the 8h-9h and
18h-19h time slots stand out, as they show that more than 70% of flights execute the Point Merge.
These findings suggest that demand and route planning could be strategically adjusted to better
utilize off-peak hours, optimizing airspace use. Extra fuel planning can be fine-tuned to enhance
operational efficiency, reducing waste and improving resource management. Conversely, the
moderate adherence observed between 20h and 22h indicates potential for revising procedures and
adjusting operations to enhance efficiency and lower costs, both economically and environmentally.

The results obtained were competitive with those found in the literature. The KPI08-based
method represents an improvement in the interpretability of the problem, as it can be represented
one-dimensionally, in contrast to solutions like those of Basora et al. (2017), which represent the
trajectory in four dimensions and across various spectra, such as in the distance domain, for
example. Murça et al. (2016) and Basora et al. (2017) use methods based on DBSCAN, which, in
its classical implementation, has a high computational cost due to repeated comparisons using all
trajectory points. Given that trajectory data is massive, as radar data is generated every 4 seconds, a
costly algorithm can cause significant challenges in production environments. The use of the
KPI08-based method also suggests a computational advantage, as the determination of the KPI08
class, according to Table 2, is done by applying rules, while the KPI08 calculation is based on time
calculations involving only two points of the trajectory, which is significantly advantageous
compared to the methods of Murça et al. (2016) and Basora et al. (2017), which use the complete
trajectory.

5. CONCLUSIONS
This work allowed us to observe that the execution of the merge point in the analyzed

periods can be extracted from both developed classifiers. However, the method based on KPI08
allowed a more precise and defined identification of flights that performed the point merge,
although cluster analysis also allows this identification, but to a lesser extent. Additionally, this



study may indicate an improvement in the arrival flow management at GRU airport, due to demand
predictability achieved through an hour-by-hour description of adherence patterns to Point Merge in
arrival movements. This predictability also enables better route planning, which may result in
additional fuel reduction and other positive environmental and economic impacts.

As a proposal for future work, we highlight the need to analyze the influence of flight level
during point merge execution, in addition to verifying the impact of the runway in use on the point
merge adherence pattern. Another possible analysis would be to verify the correlation between point
merge adherence and arrival capacity, in order to analyze whether the implementation of the double
point merge system would bring any operational gain.
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